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Abstract

This paper analyzes fatal traftic accidents of small passenger sedans in Japan. Variables

that may

relate to the occurrence of traffic fatal accidents are analyzed using a regression type model. Nine
explanatory variables describing characteristics of drivers and driving conditions are used as explanatory

variables.

The maximum likeithood method based on the Poisson distribution is used for estimations for

the model. Both the assumptions of the Poisson distribution and the exogeneity of explanatory variables are
also tested.  Finally, the problems associated with the linear probability model and sample-selection biases

of the explanatory variables are considered.

L INTRODUCTION

An analysis of factors related to the
occurrence of traffic accidents is important in
reducing the number of such accidents, In 1992,
the UK Department of Transportation conducted a
regression analysis using data aggregated by the
types of cars. The analysis showed that variables,
such as the sex and age of the driver and the size
and speed of the car affect the occurrence of traffic
accidents. Given the different traffic
environments in the UK and Japan, it would seem
to be useful to conduct a similar analysis for Japan.
The Institute of Traffic Accident Research and Data
Analysis (ITARDA) in Japan recently developed
the Traffic Accident Integrated Database, making
possible an integrated analysis from the stand
points of the - driver, vehicle; and  traffic
environment.

This paper analyzes fatal traffic accidents in
Japan using data for Sedan-A-Class cars, whose
displacement volumes are  predominantly
1500 cc or less; the cars were registered at the
end of 1995, Data for 28 different types of cars
without missing values are used. The regression-
type modetl is used for the first time for accident
data in Japan, and nine variables describing
characteristics of drivers and driving conditions are
used as explanatory variables.

As some types of cars in the data set were
involved in few or no fatal accidents {twe types
reported no fatal accidents, nine types reported 1-5
fatal accidents), they are treated as discrete data,
(For details and empirical examples of the discrete
data, see,  Winkelmann (1997} and Cameron and
Trivedi (1998).) Moreover. as there are large

differences - in. numbers. of - vehicles registered -

according to the types of cars, the model is
estimated using the maximum iikelihood method
based on the Poisson distribution. Both the
" assumptions of the Poisson distribution and 'the
exogeneity of explanatory variables are tested,
Problems associated with the linear probabiiity
model and sample selection biases of the
explanatory variabies are also considered.

2. MODELS

The model based on aggregated data is
presented this section. Suppose that there are #
different types of cars. Let y, be a dummy
variable that expresses whether or not the j-th
registered vehicle of the i-th type causes a fatal
accident during the observation period.

Specifically,
0  the vehicle does not cause a fatal
accident,

Dy, ={
Let

(2} y;,- =xy'a+tuy,
where x, -is.a.vector of explanatory -variables
representing characteristics of the driver and
driving conditions. « is a vector of unknown
parameters. As  with the usual analysis of binary
data, a fatal accident will happen if y;> 0 and will
not happen if y; <0. LetF be the distribution
function of -u, . The probability of fatal accident,
p, =Py, =1|x,),is given by

(3) Py = Flx,'a).

All the explanatory variables are dummy
variables, 1>>p, and » >>0, in this study.
Therefore, by the law of small numbers and the
reproductivity of the Poisson distribution, the
total number of  fatal accidents of the i-th type of

1 the vehicle causes a fatal accident.

}rj . . -
car, 1 = 3. v, ,.1s considercd to follow.the Poisson
J=l

”f
distribution. . -with .. the expected value. 4 =3 p;; -
=
where  n, is the number of registered vehicles
of the i-th type of car.
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Usually, £ is assumed to be either a standard
normal or logistic distribution. However, data
regarding individual vehicles are not available, and
onty the aggregated data, which give averages of
variables for each type of car, are available in this
study. As a result, we cannot use these assumptions
direcily. Here, F is assumed to be approximated
by a linear probability function, and a 1inear
probability model is used in the analysis. If F i3
approximated by the linear probability function, we
get,

B py=x,'B.and 4, ~X'B=nx'f,
",

where X, =3x, and x, =X, /n,.
=

Hence we can get the estimator of £ by
maximizing the logarithm of the likelihood function
based on the Poisson distribution given by

(SYogLif)=3 t-nx,' f+T, login,z,' )~ log(F,!)}.
i=1

Note that for the consistency of individual behavior
and the aggregated model, this model is essential.

3. DATA
3.1 Fatal Accidents

The data were obtained from the Traffic
Accident Integrated Database of the ITARDA.
The numbers of vehicles involved in fatal accidents
were 3-year totals from 1992 through 1993, The
data from 28 different types of cars without missing
values were selected from Sedan-A-Class cars.
The total number of vehicles involved in fatal
accidents was 901 among 28 types of cars. The
distribution is shown in Table 3.1. No vehicles
were involved in fatal accidents for two types of
cars, 1-5 vehicles were reported in fatal zccidents
for nine types, 6-20 were reported for one type, 21-
50 were reported for two types, 51-100 were
reported for nine types, and 101-150 were reported
for two types: The average was 32.2 and the
largest number of fatal accidents was 144.

Table 3.2 shows the distribution of the
numbers of vehicles registered for the 28 types of
cars.  Fifty-thousand or fewer vehicles were
registered for 5 types, 50-100 thousand for 4 types,
50-100 for 7 types 400 thousand to | million for 6
types, and 2-3 million for one type. The total
number of reglstered vehicles was 15,920,000; the
largest number of any particular type was
2,773,000, and the average number per type was
568,000,

Table 3.3 shows the fatal accident rates per
10,000 registered vehicles (= vehicles involved in
fatal accidents/ registered vehiclesx 10,000). The
fatal accident rates per 10,000 registered vehicles
were 0-0.3 for 4 types, 0.3-0.6 for 13 types, 0.6-0.9
for 7 types, 0.9-1.2 for 2 types, and 1.2-1.5 for 2
types. The highest rate was 1.34, the average was
0:37, and the standard deviation was 0.55: :

3.2 Explanatory Variables

_Explanatory variables for the drivers.and the

driving conditions were selected. The variables
were chosen from the Traffic Accident Integrated
Database. The variables are shown in Table 3.4.
As with the fatal accident data, the variables made
use of data from 3 years, 1993 through 1995,

Among these variables, the rate of 2 single-type
accident, SINGLE, refers to a type of an accident
which is different from other variables that are
determined by the driver and driving conditions and
can be treated as exogenous variables. However,
since  SINVGLE can be considered an indicator of
"the degree of the carelessness of driving” it is
included in the stady. '

Table 3.1 Distribution of Vehicles Involved in
Fatal Accidents

Number of Vehicles Types of Cars
0 2

1-3 g

6-20 i

21538 9

51-106 5

101-130 2

Total 28

Table 3.2 Number of Vehicles Registered

Registered Numbers Types
{Thousands}
0-50 3
50-100 4
100-30¢ 7
300-1,000 6
1,600-2,000 5
2,300-3,000 1
Total 28
Table 3.3 Fatal Accident Rates
per 10,000 Registered Vehicles
Fatal Accident Rates Types
0-0.3 4
0.3-0.6 13
0:6-0.9 ! 7
0.9-12 2
1.2-1.5 2
Total 28
Table 3.4 Definitions of Explanatory Variables
Variables  |Definition
MALE Rate of the male driver
AGEM Rate of the driver age 24 or younger
AGESS Rate of the driver age 65 or older

BUSINESS |Rate of the business use

LEISURE  |Rate of the leisure or pleasure use
BELT Rate of wearing a seat belt
NIGHT Rate of night driving
SPEED Rate of speeding over 40 knvh
SINGLE  |Rate of the single-tipe accidént

It is desirable to use data that include all
registered vehicles as-the values for the explanatory-
variables in the analysis. Unfortunately, such a
database does not currently exist. Therefore, data
that were collected from vehicles involved in
accidents with at least one casualty are used in this
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paper. These data were not obtained by random
sampling, and we cannot deny the possibitity of
sample selection biases which may have affected
the analysis. However, casualty accidents are
much more frequent than fatal accidents. The
vehicles involved in casualty accidents per 1G
thousand vehicles were 150.3-187.5 during the
period, meaning that approximately 2% of
registered vehicles were investigated. Although the
data are incomplete, the analysis was carried out
with the assumption that these data represent
explanatory variables with a good approximation.
Among the explanatory variables, the values

AGE24, BUSINESS, LEISURE, NIGHT, and
SINGLE as explanatory variables. For this model,
MALFE, AGE24, and LEISURE are significant at the
5% level. The t-value of SINGLE is 4.679, and its
p-value {one-sided) is 6.416x107, which means that
SINGLE is significant at any conventional level
These results indicate that factors such as the driver
being male or age 24 or younger reduce the
probability of fata! accidents; also, factors such as
the car being driven for leisure or pleasure or
involving a single-type accident increase the
probability of fatal accidents.

of BELT were obtained from all vehicles involved Table 4.1 Results of Estimation of the Poisson
in casualty accidents and the values for the other Repression Models  (t-values in parentheses)
variables were obtained from vehicles reporting at Numbers  af 9 8 7 6
least one casualty. The expected signs are positive Expianatory
for NIGHT, SPEED, and SINGLE and negative for Variables
BELT, one-sided tests are employved for these Constant 0.047] -0031] .0.0200 0068 0.004
variables. The means and standard deviations of the (03120 0249 0167 (-1.563) (0.249)
explanatory variables among 28 types of cars are . 1'4 ;4' ) ' o
shown in Tabie 3.5. MALE -1.409 -1.468 -1.417 ~1.441 -1.025
i o L8N 19623 (2.202)] (2073 (210
Table 3.5 Means and Standard Deviations of AGE?4 aa0sl el 23wl oan| o157
the Explanatory Variables sl (2336 el ar0| 2 429
Variabie Mean| Standard Deviation cres (- 1 01; (- i32~‘3 (-2462)| (24760 (-2.429)
MALE 50.9% (3.4% AGESS oars| 0
L3id E
24 29.1% 10.9%
Agg — - 1; - W" BUSINESS 3482)  3499] 3453  3338] 2568
A J; ' 0“ o 0" (L7973 (1915 (1.900y (1858 (L.722)
BUSINESS 9.6% 3.6% LEISURE g271|  e1ss]  7975] 7861 6829
50 Q

LEISURE 8.5% 3.1% (2.246)  (2352) Q449 (2569 (230D
BELT 86.0% 2.6% BELT 04270 -0.617]  -0.550
NIGHT 33.5% 33% (-0.267) (-0.459)] (-0.412)
SPEED 71.6% 14.6% NIGHT 39490 3904| 3380 3382
SINGLE 5.7% 1.7% (1353)] (1.363) (1.378) (L.60D)

- SPEED 0128
4. RESULTS OF THE ESTIMATION (0.19)
4.1 Poisson Regression Models . ' e i

The results of the estimation for the Poisson  [*OLE o896)  9.668] - 9.88K) - 10.5993 1_2'430
regression-models given in-Section 2-are-presented (2.803)1 . (3.606)] (3817} {4679)] (5660}
here. The estimation was performed using TSP 4.4 Log L -83.366| -83.391F -83.489] -83.3537| -84.694
and the following steps. First, the model, which | ;- 184.731) 1827821 180.978| 179.074| 179.387

contains all nine explanatory variables, was
estimated. Next, by eliminating the variable with

4.2 Regression Models for the Siagle-Type

the smallest absolute t-value, models without less
important explanatory variables were estimated. It
is necessary to calculate the totals (= means X
registered numbers) of explanatory variables for
each type of car and to make thembe X,. Since
the number of registered vehicles was large, X,
was calculated using 10,000 vehicles as be a unit.
As a result, the rates of fatal accidents were per
10,000 vehicles. The results of estimation are
given in Table 4.1.

For the model with all explanatory variables,
SINGLE is significant at the 1% level and AGE24
and LEISURE are significant at the 5% level
Although the absolute t-values are small and not

significant at the 3% level, NIGHT is the expected -

sign, and BELT and SPEED are the opposite signs.
For all models with the unimportant wvariables

eliminated, SINGLE has the expected sign and.is .

significant at the 1% level, and it is considered an
important variable affecting the causalities of fatal
accidents. Based on the A/C (Akaike Information
Criterion), the mode! with 6 explanatory variables
was selected.  The selected model contains AMALE,

Accident Rate

The analysis in the previous section shows
that SINGLE is considered to be an important
variable affecting the occurrence of fatal accidents.
However, unlike other explanatory variables,
SINGLE represents the result of an accident and is
not determined by the driver or the driving
conditions. In this section SINGLE is analyzed
using the regression models, where SINGLE is
regressed in relation to the other explanatory
variables.  The weighted least squares {WLS)
method, weighted by the registered numbers, is
used for the estimation.  As before, the mode! with
all variables is estimated first. Then, models are
estimated by eliminating variables with small
absolute t-values. The expected signs are positive
for AGE24, NIGHT, and SPEED, and negative for
BELT; and one-sided-tests are: emploved. for-these-
variables.

The results of the estimation are given in
Table 4.2, BELT is negative and significant at the
1% level for all models, and a strong relationship
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with SINGLE is suggested. SPEED and NIGHT are
positive for all models, and they are significant at
the 5% level for meodels with 6 or fewer
explanatory variables. {(N/GHT is significant at the
1% level for the model with 4 explanatory
variables.)  Therefore, one may conclude that
factors such as not wearing a seat belt, driving over
40 knvhour, and night driving affect fatal accidents
through SINGLE, which represents the “degree of
violence and carelessness” of driving,

Table 4.2 Results of the Estimation of the Models
for SINGLE (t-values in parentheses)
Number  of] 8 7 ] 5 4
Explanatory
Variables
Constant 0.2368 (2368 02315] 022191 02126
(2307 (2368)) 2.430 (2411 2.394)
MALE -0.0008
(-0.023)
AGE24 0.0156] 0.0142} 01979 0.0128
(0.234) (0379 071D} (6.320)
AGEES 02180 02:94] 0.2273] 0.2367] 02085
(L173Y (1.278)] (L.384)] (1.47D)| (1.399)
BUSINESS 0.0522| 0.0536] 0.0579
(0.428)] (0.512) (0.576}
LEISURE 0.0369] 0.0401
(0.163)| (0.224)
BELT -0.3501] -0.3306] -0.3490| -0.3305] -0.3261
(-3.350} (-3.529)] (-3.605)] (-3.674)] (-3.700)
NIGHT 022450 02261 023400 02290 02695
(LARLY (L718)) (1890} (1.883) (2.936)
SPEED 0.0345] 0.0348] 0.0383] 0.0419] 049373
(L122)] -1.2730) (17493 (2.026)] (2.030)
R* 0.8390f 0.8332] 08233 0.8221] o0.8200

5. TESTS OF THE POISSON DISTRIBUTION
AND EXOGENEITY OF SINGLE
5.1 The Test of the Poissen Distribution

in this paper, the analysis is carried out with
the Poisson  distribution. However, the
assumptions of the Poisson distribution may not be
satisfied, and the mean and variance may not be
equal. Several testing methods have been
proposed. When the mean and variance are not
equal, generalized Poisson methods based on the
binomial and negative binomial distributions and
Poisson empirical Bayes methods are used in the
analysis. { For details, see Collings and
Margolin{ 1985}, Lee (1986), Cameron and Trivendi
(1990), Consul and Famoye (1992}, and
Christiansen and Morris (1997).)  In this paper, the
method suggested by Cameron and Trivendi {1990)
is used to test the Poisson distribution.

Let u=EY,o'=F(Y). For the Poisson
distribution, o/ =x,. Following Collings and
Margolinn™ (1983), "let thé "nuli and alternative
hypotheses be:

_{8). IL]_()_:O'E_?—'_}J’,,__ Hywol=p vaul, a0,

In this case the test statistic is given by:

»3
" T =[z(i‘2’~>r”2{zg—{<n ~A -1

where 4, is the estimator of 4, .

Under the null hypothesis, 7 asymptotically
follows the standard normal distribution. The value
of 7 is 0.545 for the model with 6 explanatory
variables, which minimizes AJC. The null
hypothesis is not rejected at the 5% level, and the
difference from the Polssen distribution is not
admitted.

5.2 Test of the Exogeneity of SINGLE

As mentioned, although SINGLE is a variable
representing  the “degree of violence and
carelessness” of driving, it is the resuli of an
accident and does not directly measure the “degree
of violence and carelessness”. As a result,
SINGLE might be correlated with the error term of
the equation, and it might not function as an
exogenous variable. Therefore, the exogeneity of
SINGLE is tested using Hausman’s (1978) principle
(for details, see Grogger (1990)) for the modei with
& explanatory variables, The nuil hypothesis is that
SINGLE is an exogenous variable. The testing
procedure is as follows,
i} (4) gives a linear regression model given by

(8) Y% X, f+e, Ee =0.

Considering SINGLE as an endogenous variable,
estimate (8) by the instrumental variable method.

F(,) be  the
variable estimator of the coefficient of SINGLE and

Let 7, and instrumentai

its estimated variance. (Note that if’(;?“.} must be
obtained considering heteroskedasticity of the error

term.) 7, is consistent under both the null and
alternative.

ii) Calculate the test statistic # given by
(%) B Gy =7 ) TG ) - I}(};.w, )

where 7, and F(§,) are maximum

likelihood estimators of the coefficient of SINGLE
and its estimated variances. /4 follows the °
distribution with one degree of freedom under the
aull,

The values of estimates are 7, = 12.062,

Vip,1=11.664, 7, =10.595, and ¥y, )=4.679.
The value of & is 0.308 and the null is not rejected
at the 5% level. Therefore, it is not necessary to
treat SINGLE as an endogenous variable.

6. PROBLEMS WITH THE ANALYSIS

In this paper, the analysis was carried out
using the Traffic Accident Integration Database.
However, because of restrictions in the data there
are two potential problems that may affect the
analysis. One is the assumption of the linear
probability modei. The other problem is that the
means of explanatory variables are obtained only

from vehicles involved in casualty accidents.

These two problems are considered theoretically in
this section.
6.1 Linear Probability Model

The linear probability model is used in the

analysis. However, this model is thought to be
problematic. Here, the linear model is compared
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with the probit model, where the error term u,
follows the standard normal distribution, and the
appropriateness of the model is considered. Let the
distribution of u, be the standard normal
distribution and the distributions of the explanatory
variables be:
{10} ;e ~ N, ol), = £(x,),and ol = Vix,'a) .
This assumption makes i possible to trear the
problem  analytically. Although the actual
explanatory variables are dummy variables, the
analysis gives important information regarding the
appropriateness of the model.

Under these assumptions, the probability of
the occwrrence of fatal accidents in the i-th type of
cars, P, is given by,

f=£E (5 |x)=ELP(F, =1]x)}

I i
(11} =E{P(x,/a)}= fm(x);¢‘f{x—#f'a’)fa.}dx
=®{pal 1ol

where ¢ and @ are the density and distribution
functions of the standard normal distribution, and
E, and E, express the expected values with
respect to u, and x, . Suppose that the variances
are the same for all types of cars so  that
gl=o® for i=12,.k

oy 'atfi+e’) =(y'a’)

a' =a/Jl+o’ , it is possible to estimate the model

Since where

only from the information provided by g in this
case. (All

1/41+0* of the original coefficients.) Moreover,
the probability of a fatal accident is about 0.3~1.0
per 10,000 vehicles, and the linear approximation
of ®(z) is very good in this range. The errors
caused by the linear approximation are considered
to be small. Therefore, although the estimated
probabilities may not be reliable, the analysis in
which the variables related to fatal accidents are
determined can be carried out using the linear
probability model.

Even if the variances are not a constant value,
the same analysis can be carried out when the
fluctuation is not very large compared to that of
u4'a . Suppose that o7 isa functionof u'a. (In
this data, the values of £ are small and negative.)
When &' is a decreasing function of |u'al, P
becomes an increasing function of u'e. If of
is an increasing function of | u'a}, P becomesan
increasing function of g'e unless the change is
extreme. '

coefficients of the model become

- For example, ifo? =y, tu'al,  y, >0, then

,u{'a/\/},;&?, =g'alJl+iy, p'al. This means

that F is an increasing function of g'a. It is

necessary that o} increase by the order of (4'e)
or higher so that P becomes a non-increasing
function of |y 'a|.

If P is anincreasingfunctionof g 'e ,the

15y

analysis can be carried out by the linear
approximation of P as in the constant variance
case. Moreover, even if other functional forms

of ¢} are considered, it is necessary for
the variances to change dramatically so that the
coefficients take opposite signs. In this study,
only Sedan-A-Class cars are analyzed. It is
therefore unlikely that there would be much change
in the variance and covariance structures. Hence
we may conclude that it is reasonable to use the
linear probability model.

8.2 Effects of Sample Selection Biases on the
Explanatory Variables
In this study, the explanatory variables were
obtained only from vehicles involved in casualty
accidents. As a result, we cannot deny the
possibility that sample selection biases may have
affected the analysis. In this section, the effects of
sample selection biases are analyzed, assuming that
the explanatory variables follow a multivariate
normal  distribution.  Although the actual
explanatory variables are dummy variables, the
analysis provides important information regarding
the effects of sample selection biases.
Let 5, be a dummy variable such that
7, =1 if the j-th vehicle of the i-th type of car
causes a casualty accident and 5, =0 otherwise.

Suppose that

{(12) R S LS N
1 if 7 >0
7, =1
0 if 5,56,
where v, is a random variable that is independent

i
of x, and follows the standard normai distribution,

., 15 the first explanatory variable, x, is a
vector of other explanatory variables such that
'Y, and y,.7, and y, are unknown
dy=Ex,, and p, = Ex

X

i1

x,}'w(l,x,u,xiz‘,
parameters. Let
Then,

(13) My = Vot P %, 30, Vv, =t w,,
R A A O s AU S A
s +qu .

i g

x::;‘ =X, — . and w, =7'1x:x; "'x:z;
Let x)'=(x,,,

for the i-th type of car be Q,, and »"'=(y.7,").
The probability of a casualty accident is given by
(14y  Plg, =D =EE (7,)=0{;/0,,),

= V(wy): }«'"Q,y* +1.

x,,'), the variance-covariance matrix

where ¢

Since x; iollows the multivariate normal
distribution, x,,'y, is rewritten as
S aEax, e,
where £, is a random variable independent of
x;,; and follows a normal distribution with a mean
of zers.  Substitiiting (13) nito (13), weget 7
(16) Ty =7+, +0,,
where &, =(y, +a)x,, and v, =v, +g,.
Now, let
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£, if 7, =1
(I7) &} =4
Y if 7,=0.
Then, we get,
. R & Yo tu,
E& u)= L I e
& loy= w“{JW o # _ =0, 6l - b
where o, =V(£). Let &’ =V(y,). Since

Ly i

2 2 2
G =0, +Td

H
Vo +U 1 3] T e ¥
L8~ g v = g

Elx, [, =D=(U/y)IEG Py =1 and

A
G =0V 5,0

Eg, = IU P

Since

(18)  Ex),im, = L2y, and
o

ia i

I}= }’.d

2 -
- o-i.
E(xfij ]77” =)= Hiy +Yh‘(';""}““;~( Vi ),
where y;, =p,+a, o, =F(x,,) .and A{z)=gd(z}/ D) .
Therefore, X, ; has a sample selection bias given
by

*G.ll ,V(,

(Eg) bu “]/“——.l(

i i

).

When the sample selection biases are the
same for all types of cars, the analysis is not
affected. The sample selection biases become a
serious problermn if they cause a change in the orders
of expected values. Namely,

(20} E(x,in, =D < E(x,, |, =1) despite pu, > i, .

The necessary conditions of (20) are: i) there are
variables strongly related to casualty accidents, and
ii) the variance-covariance structures of the
explanatory variables are very different from each
other according to the types of cars. 1t is
necessary for us to assume extreme
variance-covariance structures for the
explanatory variables to be (20). Therefore,
we may conclude that fatal accidents can be
analyzed properly by the models and
methods employed in this paper unless the
variance-covariance structures are very
special.

7. CONCLUSIONS

In this paper, fatal traffic accidents for Sedan-
A-Class cars, whose dispiacement volumes are
predominantly 1500 cc or less, were analyzed.
For the analysis, the Traffic Accident Integrated
Database, developed by the Institute of Traffic
Accident Research and Data Analysis was used.
The data for 28 types of cars without missing
values were used. This database did not exist until
recently in Japan, and this paper represents the first
attempt to  analyze fatal accidents by a regression-
-+ gype model:
was smali for some types of cars and the numbers
of registered vehicles for each type of car were
different, the Poisson regression model was
employed and estimated by the maximum

Since the number-of fatal-accidents

likelihood method.

Nine variables, including the sex and age of
the driver, the purpose of driving, seatbelt usage,
night driving, speed, and single-type accidents were
considered in the analysis. The results of the
estimation show that male drivers and drivers age
24 or younger reduce the probability of fatal
accidents; however, leisure or pleasure use and
single-type accidents increase the probability of
fatal accidents. Although they are not significant
at the 3% level, the coefficients for business use
and night driving are positive. In the analysis of
single-type accidents, seatbelt usage was shown to
have a negative effect and night driving and driving
over 40 km/hour were shown to have positive
effects.

Note
I} A single-type accident is an accident that does
not involve other vehicles, pedestrians, or
trains. It is cawsed by just the accident
vehicle and it could be prevented by careful
driving in many cases.
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